
J2ME 
Architecture and

Development EnvironmentDevelopment Environment



J2ME Architecture J2ME Architecture 



J2ME Architecture 

J2ME architecture consists of layers located above the native operating
system, collectively referred to as the Connected Limited Device Configuration 

J2ME Architecture 

system, collectively referred to as the Connected Limited Device Configuration 
(CLDC).

The J2ME architecture comprises three software layers.The J2ME architecture comprises three software layers.

• The first layer is the configuration layer that includes the Java Virtual Machine 
(JVM), which directly interacts with the native operating system. The configuration (JVM), which directly interacts with the native operating system. The configuration 
layer also handles interactions between the profile and the JVM.

• The second layer is the profile layer, which consists of the minimum set of 
application programming interfaces (APIs) for the small  computing device.application programming interfaces (APIs) for the small  computing device.

• The third layer is the Mobile Information Device Profile (MIDP). The MIDP layer 
contains Java APIs for user network connections, persistence storage, and the user 
interface. It also has access to CLDC libraries and MIDP libraries.



J2ME Architecture 

A small computing device has two components supplied by the original equipment 

J2ME Architecture 

A small computing device has two components supplied by the original equipment 
manufacturer (OEM). These are classes and applications.

• OEM classes are used by the MIDP to access device-specific features such as • OEM classes are used by the MIDP to access device-specific features such as 
sending and receiving messages and accessing device-specific persistent data.

• OEM applications are programs provided by the OEM, such as an address book. 
OEM applications can be accessed by the MIDP.OEM applications can be accessed by the MIDP.



Requirements

a) Minimum resource requirements to run a J2ME application

Small Computing Device Requirements
Requirements

a) Minimum resource requirements to run a J2ME application

First the device must have a minimum of 96 × 54 pixel display that can 
handle bitmapped graphics and have a way for users to input handle bitmapped graphics and have a way for users to input 
information, such as a keypad, keyboard, or touch screen.

At least 128 KB of nonvolatile memory is necessary to run Mobile 
Information Device (MID), and 8KB of nonvolatile memory is needed Information Device (MID), and 8KB of nonvolatile memory is needed 
for storage of persistent application data.

To run JVM, 32KB of volatile memory must be available. The device must 
also provide two-way network connectivity.also provide two-way network connectivity.

b)  Minimal hardware requirements for the native operating System

The native operating system must implement exception handling,    
process interrupts, be able to run the JVM, and provide schedule process interrupts, be able to run the JVM, and provide schedule 
capabilities.



• A MIDlet is a J2ME application designed to operate on an MIDP small computing 

Run-Time Environment

• A MIDlet is a J2ME application designed to operate on an MIDP small computing 
device.

• A MIDlet is defined with at least a single class that is derived from the • A MIDlet is defined with at least a single class that is derived from the 
javax.microedition.midlet.MIDlet abstract class

• Developers commonly bundle related MIDlets into a MIDlet suite

• All MIDlets within a MIDlet suite are considered a group and must be installed and 
uninstalled as a group



Runtime EnvironmentRuntime Environment



Runtime EnvironmentRuntime Environment

• Members of a MIDlet suite share resources of the host environment and share the 
same instances of Java classes and run within the same JVM.

-This means if three MIDlets from the same MIDlet suite run the same class, only one 
instance of the class is created at a time in the Java Virtual Machine.



Runtime Environment

Inside the Java Archive File
Runtime Environment



Runtime EnvironmentRuntime Environment



Runtime Environment

Inside the Java Application Descriptor File

Runtime Environment



Runtime EnvironmentRuntime Environment



MIDlet Programming
A MIDlet is a class that extends the MIDlet class and is the interface between 
application statements and the run-time environment, which is controlled by the 
application manager.

A MIDlet class must contain three abstract methods that are called by the 
application manager to manage the life cycle of the MIDlet. 

These abstract methods are

• startApp()

• pauseApp(),

• destroyApp().



MIDlet ProgrammingMIDlet Programming



MIDlet Programming

MIDlet  life cycle

MIDlet Programming



MIDlet Programming

MIDlet  structure

MIDlet Programming

public class BasicMIDletShell extends MIDlet
{
public void startApp()
{
}
public void pauseApp()
{{
}
public void destroyApp( boolean unconditional)
{
}}
}



MIDlet Programming

The startApp() is called by the application manager when the MIDlet is started and
contains statements that are executed each time the application begins execution

MIDlet Programming

contains statements that are executed each time the application begins execution

The pauseApp() is called before the application manager temporarily stops the
MIDlet. The application manager restarts the MIDlet by recalling the startApp()
method.method.

The destroyApp() is called prior to the termination of the MIDlet by the application
manager.manager.

The MIDP API classes used by the MIDlet to interact with the user & Handle data 
management.

User interactions are managed by user interface MIDP API classes.

These APIs enable a developer to display screens of data and prompt the user to 
respond with an appropriate commandrespond with an appropriate command



MIDlet Programming

The command causes the MIDlet to execute one of three routines:
a. Perform a computation,

MIDlet Programming

a. Perform a computation,
b. Make a network request/ display another screen.

The data-handling MIDP API classes enable the developer to perform
four kinds of data routines:four kinds of data routines:

a. write and read persistent data,
b. store data in data types,b. store data in data types,
c. receive data from and send data to a network,
d. Interact with the small computing device’s input/output features.



Java Language for J2ME

Small computing device are too scarce to process the finalize() method

MIDlet cannot use any floating-point data types or calculations

JVM for small computing devices requires a custom class loaderJVM for small computing devices requires a custom class loader

You cannot group threads
JVM uses class file verification this process is replaced with a two-step processJVM uses class file verification this process is replaced with a two-step process

preverification

MIDlet class is loadMIDlet class is load

JVM for small computing devices requires a custom class loader that is supplied 
by the device manufacturer

The number of error-handling exceptions are trimmedThe number of error-handling exceptions are trimmed







J2ME Software Development Kits
Once the Java development kit is installed, place the c:\jdk\bin directory, or
whatever directory you selected for the Java development kit, on the PATHwhatever directory you selected for the Java development kit, on the PATH
environment variable (see “Setting the Path inWindows” sidebar). This enables
you to invoke the Java compiler from anywhere on your computer



J2ME Software Development Kits

Install the CLDC once the Java development kit is installed. Unzip the 
downloaded CLDC files from the java.sun.com web site onto the d:\j2me 

J2ME Software Development Kits

downloaded CLDC files from the java.sun.com web site onto the d:\j2me 
directory (J2ME_HOME) on your computer.

Next, download and unzip the MIDP file. Be sure to use \j2me as the Next, download and unzip the MIDP file. Be sure to use \j2me as the 
directory for the MIDP file

create two environment variables. These are CLASSPATH and MIDP_HOME.
The CLASSPATH environment variable identifies the path to be searched The CLASSPATH environment variable identifies the path to be searched 
whenever a class is invoked

Set the CLASSPATH to
d:\j2me\midp1.0.3fcs\classes;.d:\j2me\midp1.0.3fcs\classes;.

Set the MIDP_HOME environment variable to
d:\j2me\midp1.0.3fcs



Hello World J2ME StyleHello World J2ME Style



Hello World J2ME StyleHello World J2ME Style



Compiling Hello World

Hello World J2ME Style

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath
d:\j2me\midp1.0.3fcs\classes HelloWorld.java

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classespreverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes
d:\j2me\tmp_classes

preverify -d d:\j2me\classes d:\j2me\tmp_classespreverify -d d:\j2me\classes d:\j2me\tmp_classes

Running Hello World

midp -classpath d:\j2me\classes greeting.HelloWorld



Deploying Hello World

Hello World J2ME Style

Manifest file

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting



JAD file
Hello World J2ME Style

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad



Multiple MIDlets in a MIDlet Suite

Multiple MIDlets are distributed in a single MIDlet suite

The new MIDlet is called GoodbyeWorld and is shown in next Slide



Multiple MIDlets in a MIDlet Suite

package greeting;
import javax.microedition.midlet.*;

Multiple MIDlets in a MIDlet Suite

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class GoodbyeWorld extends MIDlet implements CommandListener
{{
private Display display ;
private TextBox textBox ;
private Command quitCommand;private Command quitCommand;
public void startApp()
{
display = Display.getDisplay(this);
quitCommand = new Command("Quit", Command.SCREEN, 1);quitCommand = new Command("Quit", Command.SCREEN, 1);
textBox = new TextBox("Goodbye World", "My second MIDlet", 40, 0);
textBox .addCommand(quitCommand);
textBox .setCommandListener(this);textBox .setCommandListener(this);
display .setCurrent(textBox );
}



Multiple MIDlets in a MIDlet Suite
public void pauseApp()
{
}
public void destroyApp(boolean unconditional)

Multiple MIDlets in a MIDlet Suite

public void destroyApp(boolean unconditional)
{
}
public void commandAction(Command choice, Displayable displayable )public void commandAction(Command choice, Displayable displayable )
{
if (choice == quitCommand)
{
destroyApp(false);destroyApp(false);
notifyDestroyed();
}
}
}}



Multiple MIDlets in a MIDlet Suite

Compile both the HelloWorld.java and GoodbyeWorld.java files by entering the 
following command at the command line.

Multiple MIDlets in a MIDlet Suite

javac -d d:\j2me\tmp_classes -target 1.1 –bootclasspath d:\j2me\midp1.0.3fcs\classes 
*.java

Preverify these files by entering the following command at the command line:

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes
d:\j2me\tmp_classesd:\j2me\tmp_classes

Create the HelloWorld.jar file by entering the following command. Make sure that
the j2m/src/greeting directory is the current directory.

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting

To run the J2ME applicationTo run the J2ME application

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad



Multiple MIDlets in a MIDlet SuiteMultiple MIDlets in a MIDlet Suite

Manifest file

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorldMIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld

MicroEdition-Configuration: CLDC-1.0MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0



Multiple MIDlets in a MIDlet SuiteMultiple MIDlets in a MIDlet Suite

JAD File

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-Description: My First MIDlet suiteMIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorldMIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld

MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 4048


